Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 283: 120438, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918179

RESUMO

The benefits of consuming fruits and vegetables are widely accepted. While previous studies suggest a protective role of fruits and vegetables against a variety of diseases such as dementia and depression, the biological mechanisms/effects remain unclear. Here we investigated the effect of fruit and vegetable consumption on brain structure. Particularly on grey matter (GM) and white matter (WM) volumes, regional GM volumes and subcortical volumes. Cross-sectional imaging data from UK Biobank cohort was used. A total of 9925 participants (Mean age 62.4 ± 7.5 years, 51.1 % men) were included in the present analysis. Measures included fruit and vegetable intake, other dietary patterns and a number of selected lifestyle factors and clinical data. Brain volumes were derived from structural brain magnetic resonance imaging. General linear model was used to study the associations between brain volumes and fruit/vegetable intakes. After adjusting for selected confounding factors, salad/raw vegetable intake showed a positive association with total white matter volume, fresh fruit intake showed a negative association with total grey matter (GM) volume. Regional GM analyses showed that higher fresh fruit intake was associated with larger GM volume in the left hippocampus, right temporal occipital fusiform cortex, left postcentral gyrus, right precentral gyrus, and right juxtapositional lobule cortex. We conclude that fruit and vegetable consumption seems to specifically modulate brain volumes. In particular, fresh fruit intake may have a protective role in specific cortical areas such as the hippocampus, areas robustly involved in the pathophysiology of dementia and depression.


Assuntos
Demência , Substância Branca , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Frutas , Depressão/diagnóstico por imagem , Bancos de Espécimes Biológicos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Reino Unido , Demência/diagnóstico por imagem , Demência/patologia
2.
Psychiatry Res Neuroimaging ; 328: 111580, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481591

RESUMO

Corpus callosum (CC) is the largest commissural white matter bundle in the brain, responsible for the integration of information between hemispheres. Reduction in the size of the CC structure has been predominantly reported in children with autism spectrum disorder (ASD) compared to typically developing children (TD). However, most of these studies are based on high-functioning individuals with ASD but not on an inclusive sample of individuals with ASD with varying abilities. Our current study aimed to examine the CC morphometry between children with ASD and TD in the Indian population. We also compared CC morphometry in autistic children with autism severity, verbal IQ (VIQ) and full-scale IQ (FSIQ). T1-weighted structural images were acquired using a 3T MRI scanner to examine the CC measures in 62 ASD and 17 TD children. The length and height of the CC and the width of genu were decreased in children with ASD compared to TD. There was no significant difference in CC measures based on autism severity, VIQ or FSIQ among children with ASD. To our knowledge, this is the first neuroimaging study to include a significant number (n = 56) of low-functioning ASD children. Our findings suggest the atypical interhemispheric connectivity of CC in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Substância Branca , Humanos , Criança , Corpo Caloso/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo , Substância Branca/diagnóstico por imagem
3.
BMC Biol ; 20(1): 283, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527001

RESUMO

BACKGROUND: Like most living organisms, the fruit fly Drosophila melanogaster exhibits strong and diverse behavioural reactions to light. Drosophila is a diurnal animal that displays both short- and long-term responses to light, important for, instance, in avoidance and light wavelength preference, regulation of eclosion, courtship, and activity, and provides an important model organism for understanding the regulation of circadian rhythms both at molecular and circuit levels. However, the assessment and comparison of light-based behaviours is still a challenge, mainly due to the lack of a standardised platform to measure behaviour and different protocols created across studies. Here, we describe the Drosophila Interactive System for Controlled Optical manipulations (DISCO), a low-cost, automated, high-throughput device that records the flies' activity using infrared beams while performing LED light manipulations. RESULTS: To demonstrate the effectiveness of this tool and validate its potential as a standard platform, we developed a number of distinct assays, including measuring the locomotor response of flies exposed to sudden darkness (lights-off) stimuli. Both white-eyed and red-eyed wild-type flies exhibit increased activity after the application of stimuli, while no changes can be observed in Fmr1 null allele flies, a model of fragile X syndrome. Next, to demonstrate the use of DISCO in long-term protocols, we monitored the circadian rhythm of the flies for 48 h while performing an alcohol preference test. We show that increased alcohol consumption happens intermittently throughout the day, especially in the dark phases. Finally, we developed a feedback-loop algorithm to implement a place preference test based on the flies' innate aversion to blue light and preference for green light. We show that both white-eyed and red-eyed wild-type flies were able to learn to avoid the blue-illuminated zones. CONCLUSIONS: Our results demonstrate the versatility of DISCO for a range of protocols, indicating that this platform can be used in a variety of ways to study light-dependent behaviours in flies.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/fisiologia , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Atividade Motora/fisiologia , Visão Ocular , Proteína do X Frágil de Retardo Mental
4.
Cells ; 11(22)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428957

RESUMO

The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Animais , Humanos , Drosophila melanogaster/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Canais de Cloreto/metabolismo , Fluvastatina/efeitos adversos , Doenças Musculares/genética , Drosophila/metabolismo , Locomoção , Fenótipo
5.
Nutrients ; 13(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073949

RESUMO

Deficiency of vitamin B6 and vitamin B12, mostly in vegetarians, is found to be associated with depression and adverse neurological function. We investigated whether vitamin B6, B12, and folate have an effect on brain structure, especially among depressed people who follow a specific diet. The study sample comprised 9426 participants from the UK Biobank cohort with a mean age of 62.4 years. A generalized linear model controlling for age, sex, body mass index, ethnicity, town send deprivation index, educational qualification, smoking, and alcohol intake was used to test the association between study groups and structural brain volumes. Depression was more prevalent, and intake of vitamin B6 and B12 was lower among vegetarians, while non-vegetarians had a lower intake of folate. Overall, no significant association was observed between vitamin B6, B12, and folate intakes and both global and subcortical brain volumes among participants with depression. However, vitamin B12 intake was positively associated with right pallidum among non-depressed participants, and a significant interaction between vitamin B12 intake and depression status on the right pallidum was observed. Also, a significant interaction between folate intake and depression status on grey matter (GM) volume and left thalamus was observed. Upon diet stratification, folate intake is associated with total brain volume and GM volume among vegetarians with depression. Furthermore, no significant associations were observed for subcortical regions. Our findings suggest that dietary intake of vitamin B6 and B12 might have an effect on brain structure. Vegetarians, particularly those who suffer from depression may benefit from supplementing their diets with vitamins B6, B12, and folate to ensure brain health. Further studies, especially with a larger sample size and longitudinal design, are needed to confirm these findings.


Assuntos
Encéfalo/anatomia & histologia , Depressão/epidemiologia , Ácido Fólico/administração & dosagem , Vegetarianos/estatística & dados numéricos , Vitamina B 12/administração & dosagem , Vitamina B 6/administração & dosagem , Idoso , Encéfalo/diagnóstico por imagem , Dieta , Ingestão de Alimentos , Feminino , Deficiência de Ácido Fólico/epidemiologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Reino Unido/epidemiologia , Deficiência de Vitamina B 12/epidemiologia , Deficiência de Vitamina B 6/epidemiologia
6.
Brain Sci ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731370

RESUMO

Imbalances in dopaminergic signaling during development have been indicated as part of the underlying neurobiology of several psychiatric illnesses, including schizophrenia, major depression, bipolar disorder, and food addiction. Yet, how transient manipulation of dopaminergic signaling influences long-lasting behavioral consequences, or if these modifications can induce inheritable traits, it is still not understood. In this study, we used the Drosophila melanogaster model to test if transient pharmacological activation of the dopaminergic system leads to modulations of feeding and locomotion in adult flies. We observed that transient administration of a dopaminergic precursor, levodopa, at 6 h, 3 days or 5 days post-eclosion, induced overfeeding behavior, while we did not find significant effects on locomotion. Moreover, this phenotype was inherited by the offspring of flies treated 6 h or 3 days post-eclosion, but not the offspring of those treated 5 days post-eclosion. These results indicate that transient alterations in dopaminergic signaling can produce behavioral alterations in adults, which can then be carried to descendants. These findings provide novel insights into the conditions in which environmental factors can produce transgenerational eating disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...